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Although sponges, one of the oldest metazoan
groups, possess the greatest diversity of
biologically active compounds Of any marine
phylum, the neurotransmitter serotonin
(5-hydro\ytryptaminc\ 5-HT) has been reported

only once, in nryoeyte-like cells of Sycon
viliatum (Syceltidae, Calcarea) (Lett/, 1966).

Serotonin appeared early in the evolution ol'

eucaryoies. for example, U is used in chemical

signal chains in Protista where, in a species ofthe
ciliale Blepharistmt. a serotonin- like substance is

known to function as a mating pheromone
(Haldane, 1954; Miyakc. 1984). ifhas also been
shown that a number of lower organisms use
serotonin as ai) interna] messenger in their neuro-

transmitter-rcceptor systems (Carr el al., 1989)

and that some of these characteristics of
molecular structure that arose in unicellular

organisms may have been inherited and modified
bymctuzoans (Mackie, ! 990; Van 1 louten, 1 990).

It seems obvious that nerve cells developed

gradually over a long period of time but the

Sequences of changes that must ha\ t occurred are

difficult to establish. Being a primitive outgroup

ofthe humcta/oa, Porifera do not have neurons

<>r myocytes that are present in organisms of

higher levels of organisation. A common
phylogenetic hypothesis such as the Planula or

Phagocvtclla hypothesis (see Ilyman, 1951;
lvanov/l98S; Rieger et al., 1991: Ax. 1995)

encouraged the authors to search for precursors

of nerve and muscle cells in sponge larvae in

early developmental stages rather than in adults, a

ected area of research so far (Harrison & De
V0Ss 1991; Woollacott & Pinto, 1995). Sueh
precursors of ner\ e cells and myocytes in

sponges could represent, the first stage in ihe

evolution of integrative systems (e.g. Pawns de

arty. 1974a, J989; Mackie. 1990).

MATERIALS AND METHODS

Larvae of Tedania ignis (Durehassaing &
MichelotU) I Tedaniidae. Poccilosclerida, Demo-
spongiae) were sampled in the laboratory

seawater system ofthe Smithsonian Coral Reef
Field Station at Carrie Bow Cay, Belize, in March
1994 and November 1995. Larval release was
induced in adult specimens collected in the

nearby mangrove ofTwin Cays (Rihvler& Keller,

1996) and maintained in aerated seawater by

exposing them to natural sunlight following a

1 2—24hr period of dark adaptation (Woollacott,

1993), The larvae were kept in seawaler-rinsed

glass dishes (10cm diameter) and fixed
immediately after release and SO-IOObrs alter

attachment to the substrate. To provide a
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substrate suitable for fixation and removal for

subsequent processing, the bottom of these

dishes was coated with polymerised epoxy resin

(Spurr).

Specimens were fixed in 4% paraform-
aldehyde (PFA) in phosphate-buffered saline

(PBS; 0.1M, pH 7.4) for 6-8hrs, rinsed in PBS,
and treated with Triton X-100 (0.2%, lhr) to

permcabilise membranes. After labelling with

the primary antibody (rabbit anti-serotonin,

IMMUNOTECH 0601; 2.5%) overnight at 4°C,

fluorescence-labelling was done for lhr with a

tetrarhodamine-isothiocyanate-(TRITC )-

conjugated secondary antibody (swine anti-rabbit;

DAKO, 1%) for lhr. Specimens were then rinsed

in PBS, whole-mounted (Gelmount) on slides,

and examined under a REICHERT Polyvar
epifluorescence microscope. Incubation in

bovine-serum albumin-Triton (BSA-T) without

primary antibody was used as the control for

nonspecific binding of the secondary antibody.

Three larvae and three settled juvenile sponges
were sectioned (epoxy-embedded, lum thick,

stained with toluidin blue) and investigated in

detail. The immuno-staining of both larvae and
freshly settled sponges was carried out by the

labelled streptavidin-biotin method (LSAB kit;

DAKO). Histochemical staining of peroxidase

with amino-ethyl-carbazole (AEC, substrate

buffer) was used to enhance visibility of the

labelled cells.

RESULTS

Tedania ignis has a parenchymella larva

composed of two types of cells (Bergquist et al.,

1979). Peripherally, flagellated epithelium-like

cells cover the organism. This "epithelium" is

monociliated and 1 0-25 jam high. The free-

swimming larva exhibits coordinated ciliary

action. A distinct basal lamina and typical

eumetazoan apical junctional complexes are

apparently lacking (but see below). Interior, appar-

ently motile mesenchymal cells (mesohyl cells)

are arranged beneath the epithelium-like sheath

(Woollacott, 1990, 1993; Amano & Hori, 1994)
(Fig. 1 A). The live larvae are ovoid and have a

size of 700-900um long, 500-600^m wide, but

the necessary Triton X-100 treatment weakens
the cell membranes and larvae usually shrink and
collapse (Fig. 1A, B). In the juvenile, settled

sponge too- as in the adult-the exopinacoderm
w Inch covers the ectosome acts as the protective

layer. Inside the sponge, choanocyte chambers
connected by canals lined with endopinacocytes

lie embedded among mesohyl cells (Fig. 2A).

Using a whole-mount fluorescence technique,

we found serotonin-like immuno-reactivity in

special mesohyl cells of both larval and juvenile

T. ignis. Spherical serotonergic cells appear to be

randomly distributed and occur alone or in

clusters (Figs 1 B, 2B). In one larva, for example,

6 clusters of such serotonin positive cells were
found, each composed of 2-4 single spherical

cells with a diameter of 4-6u.ni. In some clusters

as well as in several single cells the nuclei are

clearly visible and appear as non- fluorescent

regions (Fig. IB).

In the juvenile, settled sponge, a few bipolar

cells were found in addition to the spherical cells

that superficially resemble bipolar neurons or

'nlyocyte-like
,

cells (actinocytes) reported by
Bagby (1966) (Fig. 2B, C). These bipolar cells

have a maximum length of20-50jAm. Both types

ofserotonin-positive cells (spherical and bipolar)

appear to be located in the mesohyl as spicules

can be seen on top ofthe labelled cells (Fig. 2C).

No information is yet available on whether
interactions between these morphological types

of serotonin-positive cells occur, nor do we know
whether the bipolar cells differentiate from the

spherical type. If these serotonergic cells are part

of an integrative system, both cellular commun-
ication at a distance (spherical cells) or cell-cell

contacts (bipolar cells) could be expected.

DISCUSSION

Our study is the first to report serotonergic cells

in Demospongiae, a spherical type in both larva

and post-metamorphosed sponge, and a second

bipolar cell type that is exclusive to the post-

larval developing organism . Up to now,
serotonin was only demonstrated histo-

chemically in myocyte-like cells ofCalcarea (see

below). Among the most primitive Eumetazoa,
serotonin is well known to act as a neuro-
transmitter (e.g. in Anthozoa, Umbriaco et al.,

1990). Actually, 5-HT has a wide range of
functions in invertebrates, such as control of
regeneration processes in Planaria (Kimmel &
Carlyon, 1 990) and ofbeat of cilia in echinoderm
embryo (Mogami et al., 1992), and as inhibitors

and activators of muscle of molluscs (Welsh,

1953; Twarog, 1988). As in Porifera, members of
the phylum Plaeozoa do not differentiate nerve or

muscle cells and are therefore counted among the

most primitive eumetazoans (Grell, 1974; Ax,
1989; Grell & Ruthmann, 1991). Schuchert

(1993) demonstrated in Trichoplax adherens



SEROTONIN IN PORIFERA ? 66

• .¥* •

•-

* -J

FIG. 1. Tedania ignis, histology of larva. A, Longitudinal section of an entire larva stained by toluidin blue

showing epithelial-like cell layer (e) and dark-staining cells (archaeocytes, arrow) in clusters near the posterior

pole (p) (scale bar=100um). B, Serotonin-positive cells (s) are randomly distributed in the larval body; at least 6

clusters of 2-4 labelled cells are evident (one marked, asterisk). The nucleus in some of the cells is visible as a

non-fluorescent region (arrow). As control for non specific binding of the secondary antibody specimen were
incubated in BSA-T without primary antibodies. (Scale bar=100um.) C, Nomarsky contrast view of the same
specimen as in Fig. IB. The collapsed and shrunk appearance is due to a necessary Triton X- 1 00 treatment that

weakens the cell membranes. (Scale bar=T00mu.)

(Placozoa) bottle-shaped cells (2.7-4|im) that

stain specifically with the neuropeptide RF-
amide. The author speculated about a possible

sensory function of the bottle-shaped cells

because the RF-amide positive cells were
localised at the margin ofthe disc-like body of T.

adhaerens and the neuropeptide RF-amide is

regarded as functionally conservative in lower

invertebrates.

Much effort has been made toward identifying

attachment complexes between adjacent cells of
the pinacoderm in adult sponges, as this layer

controls the sponge's internal milieu which
differs from the surrounding environment
(Ledger, 1 975; for review see Harrison & De Vos,

1991). This altered chemical composition in the

tissue fluid of the sponge is regarded as a basic

precondition for the evolution ofnervous systems.

Bandshaped, (epithelial-type) apical cell

junctional complexes seem to be present in adult

Porifera (e.g. apposed membrane junctions in

Bagby, 1970; simple junctions in Ledger, 1975;

parallel membrane junctions in Green &
Bergquist, 1982; fig. 6 in Garonne & Lethias,

1990) in ultrastructural investigations of Tedania

ignis, comparable structures seem to be evident

(authors, unpublished). However, unequivocal

clarification of the organisation of apical

junctional complexes is still lacking in the

Porifera. It has been stated repeatedly that perm-

anent junctional complexes in epithelially

organised cells, if present, are different in
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FIG. 2. Tedania ignis, histology of freshly metamorphosed
juvenile sponge. A, Overview of a cross section stained by
toluidin blue. The cells have begun to differentiate into

pinacocytes (p) and multiple subtypes of mesohyl cells (m). A
water canal in process of forming is indicated (arrow). (Scale

bar=150um.)B, Detail ofthe ectosome. Several spherical (arrow)

and one bipolar (asterisk) serotonin-positive cells are visible. To
enhance visibility ofthe labelled cells a histochemical peroxidase

staining was used. (Scale bar= 1 5 urn.) C, Bipolar serotonergic cell

(same specimen as in Fig 2A). Spicules (arrow) can be seen above
the labelled cell. (Scale bar=4^im.)

construction from those of Metazoa
(e.g. Green ,1978; Green & Bergquist,

1979). One reason for this difference is

seen in the high motility and frequent

rearrangement of sponge cells (e.g.

Muller, 1982). However, it seems
likely that development of permanent
communicating structures goes hand in

hand with less mobility and a highly

differentiated state of cells. For
example, Lethias et al. ( 1 983) are ofthe
opinion that additional freeze-fracture-

and TEM-investigations of sponges
might reveal membrane specialisations

and connections to cytoskeletal

components. On the other hand, several

investigators of freshwater and marine
sponges could not identify such
junctional complexes (e.g. Lethias et

al., 1983; Weissenfels, 1990;
Woollacott, 1990).

While there is yet no evidence for

chemical synapses in sponges, several

reports discuss gap junction-like
structures in the Porifera that may
function as electrical synapses. For
example, Green & Bergquist (1979)
interpreted structures observed by
SEM as temporary intercellular

communication canals. Also, Revel
(1988) and Garrone & Lethias (1990)
describe various particle fields in

freeze-fracture replicas, some ofwhich
superficially resemble gap junctions or

rhomboid panicle fields of Eumetazoa
but cannot unequivocally be claimed as

typical gap junctions.

Contractile cells in the mesohyl of
sponges-actinocytes (see Boury-
Esnault & Rutzler, 1997), but often

called myocytes or myocyte-like cells

-are arranged in networks (Bagby,
1966; Prosser, 1967; Bergquist, 1978;

Burlando et al., 1984; Wachtmann et

al., 1990; Harrison &DeVos, 1991) and
have been seen as an early stage in the

evolution of nerve and muscle cells

(see literature in Lentz, 1966; Pavans
de Ceccatty, 1974a; Mackie, 1990).

Two types of microfilaments, that is,

thin (5-7nm) and thick (15-25nm)
filaments can be observed in the

cytoplasm. In Tedania ignis and
Hippospongia communis, only thick

filaments have been reported (Harrison
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& Dc Vos, I99t). The ability to contract or

condense in response to endogenous events or

external stimuli is a common feature in Calcarea
and Demospongfee. It results in a decrease in

body size and concurrent increase in numb,
cell contacts (review in Simpson, 10X4;

Wcissenfcls, 1989); One can speculate whether

\h& increased number of cell conlaeis is only the

result ot a reduced body volume or possibly

serves the intensification o\' \sigua I transduction
1

in the network of actinocytes. Frequent cell-cell

contacts between myocyte-Iike cells were also

observed in rY. communis (Pavans de Ceceatty et

al., 1970). According io Pavans dc Ceccany

1 1 074a). the microfilament-containiivi
pinacocytes play an important role in this process,

both for cell contraction and cell commtuueation
Owing to the dynamic. Moose" organisation of
cellular features (I'avnns dc Cec catty,, I' :

Bond. 1992 ) there arc no nervous cells evident in

sponges, but one can espcci temporary, fixed

pathways through connected mesohyl cells at the

points of stable mlcicellular connections. Lent/

j 1%6 1 reported acetylcholinesterase, monoamine
oxidase, epinephrine, norepinephrine and 5HT
(serotonin) in 'myocyte-like" cells of Sycon
ciliatum. These observations along with the

association ofcholinesterase and myofilaments
in myocyte-likc cells and the report ot' actio

filaments in pinacocytes (Pavans de Ceceatty,

1989) may signity myoid and neuroid elements

from a common integrative system that \$

coordinating 'tissue' contractions in sponges
although electrophysiological evidence o) a

conducting mechanism is soil lacking (Lawn,

1982).

In conclusion, wc believe our findings of

serotonergic cells in the Paru/oa suggest an

evolutionary specuihs:! 1

1 oi vrotonin, separate

from its function in I'mtists. We interpret our

observations as supporting the recently
emphasised sister-group relationship with the

Eumetazoa (Munis, 1993; MNlUer, 1995; Av
1995) by exhibiting the veiy firsJ steps in ib<

evolutionary development of the integrative

system ot the Metazoa. Further research

involving additional species and immuno-
v'. :te i "mi. aoiogiciil. and otltei

appn. laches is clearly needed.
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